Drilled E-714, Clecoed Left Elevator Skin

June 10, 2010

Prev | Next

Hey Look! Andrew’s not dead! Yeah, I’ve been working on some house projects. Back to the left elevator tonight, though.

I managed to catch myself up with where I was and push on today. I need to get that counterweight drilled.

Here you can see the counterweight, counterbalance skin, and the two end ribs around which the other parts reside.

After placing the weight in position, you cleco on the skin (difficultly) and get ready to match-drill. Of course, I met the same challenges I did on the right elevator…namely, I broke a drill bit (#40 size). After getting a pilot hole drilled, I took everything apart and separately enlarged them all to #21. Air tool oil was used with great success after the pilot hole was drilled.

Ready to start drilling.

I didn’t take any pictures, though, because I was getting frustrated. (At first, I was dipping the drill bit into the oil, which meant I had to take the lid off. Then, after stepping away a few minutes later, I placed the screw lid (with the flip-up spout) back on the oil bottle and immediately flipped it over to aim oil into the pilot hole. Guess what! I forgot to tighten down the lid. There goes the lid, and about a 1/2 cup of oil…all over the counterweight, table, and floor.)

Now do you see why I forgot to keep taking pictures?

Anyway, after that debacle (which of course gets counted in the build time…it’s time spent building, right?)

Anyway, here is that same assembly (sans weight) before clecoing on the skin.

In preparation for clecoing on the skin, I needed to handle E-606PP, which is the trim tab hinge spar. Since I was looking ahead earlier and dimpled the hard-to-reach holes (you can see in the skin below), I need to do something with the spar to accept those dimples. If you read ahead in the directions, the spar is countersunk on the top flange (because the hinge is riveted beneath the spar flange, it can’t be dimpled), and dimpled on the bottom flange.

June 10 Update: After countersinking these four holes, I later did some more research and realized that the countersinks called for (due to the hinge) don’t really apply here, because the hinge stops short of these four holes. I could have (and wished I’d ) dimpled. Boo.

Here are the two parts that need to fit together nicely.

Finally, I got the skeleton and skin clecoed together.

Wuhoo. It looks like an airplane.

A solid hour. Maybe more this weekend.

Prev | Next


Started Left Elevator

May 24, 2010

Prev | Next

Well, it’s monday. And even though I have a couple things remaining on the right elevator, I am going to follow the flow of the directions and move on to the left elevator before coming back to finish both of them.

In addition to the items they want you to do to both at the same time (roll leading edges, install rod-end bearings, etc.), I’ll have to come back to do three things on the right elevator:

  1. Fix a few over-driven rivets (and a couple that bent over that I didn’t catch at the time.)
  2. Figure out how to add RTV to the trailing edges after the fact (anyone have any ideas?)
  3. Trim down the counterbalance. I elected not to do this on purpose.

Anyway, on to the left elevator. Here’s the obligatory changing-of-the-plans shot.

On to the left elevator (and trim tab).

As I only have about a half an hour tonight, my plan was to just cover the basics. First, lay out all of the left elevator parts.

It doesn't look like a lot of work...

Devinyl the skeleton parts.

This picture is almost identical to the one before it, except for the missing blue vinyl on the skeleton parts.

Then, on to real work…kind of. The manual wants me to attach the hinge reinforcing plates to the spar, then move to the outer ribs.

Here you can see the two outer ribs fluted. I haven't straightened out the rib flanges yet, will get to that soon.

Blah blah blah, assemble the skeleton. For now, I didn’t do any match-drilling. I do that hole-by-hole as I take the thing apart.

This one will be more interesting due to the trim spar.

Finally, I found one more of the stiffener angles. I got that devinyled and then cut from hole to hole to form some of the smaller stiffeners.

More small stiffeners. These go between the main spar and the trim spar (ahead of the trim tab).

With that stuff done, I headed inside and caught someone with their hands in the cookie (doggie-treat) jar.

That bottom shelf has the doggie-treats on it. (We have really patient dogs. /sarcasm off)

Lucky you, I got some video.

Anyway, a short half hour of left elevator prep.
Prev | Next


Riveted Right Elevator Skeleton

May 13, 2010

Prev | Next

Well, I’d been waiting for a couple days for an order from Aircraft Spruce to come in. I ordered a whole bunch (~60) #6 screws and nutplates to use to attach the emp tips, and added a couple 1/4″ nutplates to attach to the elevator counterbalance spars so I can add more weight later for fine elevator balancing.

Here’s the deal. When you initially balance the control surfaces (without paint), you can either leave them a little heavy (which some do), or balance them exactly. Given that I might leave my empennage polished, I thought I would go ahead and balance them perfectly for first flight, then rebalance (pronounced “add weight”) after paint. While the forward tooling hole in the counterbalance ribs would work for a straight up bolt and nut, I’d prefer a nutplate. Also, since the two counterbalance ribs are butted against eachother, I’d prefer to drill for the nutplate now, so I can deburr both sides of both surfaces.

(I wonder how people deburr holes drilled through two permanently attached skins. Maybe just the inside and outside of the two skins and not the middle two surfaces?)

Anyway, here’s the order.

screws and nutplates.

Both size #6 screws in their new home.

I'll definitely be able to tell the difference between the two sizes.

Here are the 1/4″ nutplates. I bought one-lug because I thought the second lug might interfere with the An509 screw and nut used to attach the elevator counterweight. I’ll point it out again later.

MK2000-4 nuplates.

Then, some of the smaller MK2000-06 nutplates. I bought these for some of the tight locations on the emp tips.

I forgot to take a picture of the 60-odd 2 leg nutplates.

Okay, now on to real work. Here I am trying to figure out how to get this thing in a place where I can drill it. I don’t have any 1/4″ clecos, so I had to just eyeball it. That was a bad idea.

After one of the #40 holes drilled.

Here's the second hole drilled. You can see I had to enlarge the tooling hole to much bigger than 1/4" because I am lame and didn't have a 1/4" cleco to located the two attach holes. Lame me.

After taking those apart and deburring the holes, I scuffed everything up, leaving only the four rear-most holes on the E-703 End Rib. Again, I use the rivet in the hole into the countersunk steel bar trick.

Ready to flush rivet to form this dimple.

I have a 5/8" flush set, which comes in handy in some places.

Both done.

After cleaning those two ribs, I set them aside to dry before priming. Then, I moved on to the WD-605-R-1 Elevator Horn.

Let's see. AN470AD4-4 rivets. I might have some of those.

A small smiley on the lower left rivet, but according to the diagrams, it is okay.

6 nice rivets. The shop heads are very nice.

See? Told you.

Then I shot the six on the other side of the horn.

I love this new tungsten bucking bar.

6 more down.

Back to the paint booth.

E-703 End Rib and E-704 Counterbalance Rib being primed.

And now, a big pictures shot of the elevator horn on the skeleton.

It's starting to look like an airplane.

Then, I deviated from the plans (like many builders here.) It is easier to attach the E-704 Counterbalance rib to the spar if you don’t rivet it to the E-703 End rib first. I managed to massacre the left head, and the flange on E-704 didn’t sit flat against the skin on the other side.

Whoa. Take it easy, Andrew.

I don't like how the flange isn't flush with the spar web here.

Time to get the drill out.

Drilled first with #40, then #30 through the head only.

Pop the heads off.

Then re-set. This is a little better.

But not perfect. I think it's going to be good enough. I'd rather see them sitting perfectly flat, but the area around the rivet is sitting where it should be. It's just around the edges of the flange that are standing off a little.

Here are the new manufactured heads. Much better.

There we go. What's next?

Okay, now I need to attach the E-704 to E-703. Wait a minute! There is no rivet callout for these.

I see one for E-703 to E-702 and for E-704 to E-702. Where is the E-704 to E-703 callout? Well, I guess I'll just use AN470AD4-4 rivets.

Yikes.

The three upper middle rivets are all horrible. I can't figure out why the gun is jumping around so much.

Anyway, before drilling those out, I wanted to get that nutplate riveted on. Same deal here, though. I couldn’t figure out how to cleco it on for riveting.

Here are the two NAS1097 rivets ready to go.

I ended up shooting both of these at once. (How cool is that?)

NAS1097-4 (I think they are -4s)

I held the bucking bar on the other side and used my finger to hold the nutplate firmly against the web of the rib.

Is this a good method? No. Did it work? Yes.

Anyway, in the above picture, you can see one of the three rivets that I botched. After drilling all three out, I reset 2 successfully, but messed up this one again.

Grrr. It didn't really bend over, but it kind of shifted to one side.

Drilled it out, then did the exact same thing. This is the third time I’ve drilled out a rivet on this hole.

Grrr.

I figured out that during the first try, I had bent the rib web a little, so the rivet was pre-inclined to lean. I took my tungsten bucking bar and my 5/8″ flush set (without a rivet) and got everything flattened out again. Next try, the rivet set well.

Top middle rivet. Much better.

Finally, an upside down picture of the right elevator skeleton.

Tomorrow, I'll get back to work on the skin. Maybe this weekend I'll have an elevator!

2 hours, 26 rivets. 5 drilled out (3 of those was one hole!)

Prev | Next


I Love Tungsten (Started Riveting Right Elevator)

May 8, 2010

Prev | Next

Well, this morning, the girlfriend ran some errands, and I got my house chores done early, so I headed out to the garage to make some loud noises. Recently, I’ve been taking one component at a time from drilled through primed. It make my work sessions less boring (not a full day of deburring lots of parts, but rather one day of drilling, deburring, scuffing, dimpling, cleaning, and priming one part).

Anyway, today, it was the right elevator spar’s turn.

First, deburring. There's my oversize drill bit spun in my fingers.

Then I put a nice scuff on all sides and edges.

Scuffed and edge finished.

Then, I broke out the tank dies to do some dimpling.

I love these dies. Such high quality.

I know you guys have seen tons of dimples from me, but I still take pictures.

The male side.

And the female side. Apparently I have not edge-finished yet.

After finished dimpling, I grabbed this shot down the length of the spar.

Right elevator spar, dimpled.

I forgot to take a picture of the countersinking I had to do on the front (flanged) side of the spar. The spar needs to be countersunk to hold the flush rivets attaching the E-709 Root Rib Right. The elevator control horn fits over them.

Then, inside for cleaning and back outside to the paint booth.

One side primed.

While I was waiting for the back side of the spar to dry, I went ahead and pulled the vinyl off both sides of the E-713 counterbalance skin.

The vinyl comes off a lot more easily when it is warm out.

Then, I got the other side of the spar primed, and prepped for some riveting. I had already prepped and primed the two reinforcement plates that get riveted to the back of the spar.

There's my new tungsten bucking bar.

Here’s my setup for spar riveting.

You can't see the reinforcement plate, but those clecos are holding it on.


After 8 rivets, all I can say is…WOW. I love this tungsten bucking bar. 8 perfect rivets. With the older, and smaller, bar I was using before, things were always bouncing around, and my hand was vibrating, etc. With this bar, it is so easy to rivet. I should have bought this at the beginning of the project.

Wow, these are amazing shop heads.

Here's the other side.

I spent about 2 minutes just staring at the bar. Amazing.

I thought I would show you my grip.

8 more, also perfect.

Wuhoo, this bucking bar is great!

And, the other side of those.

I wanted to buck these, but I thought it would be better to squeeze them.

The spar to E-709 rivets.

These are the flush rivets I was talking about earlier. Of course, when the primer is only 30 minutes old, and you try to clean up some smudges with MEK, the primer will rub off. Duh.

I re-shot some primer over this right after this picture.

What a great day. I got to make loud noises, and I’m in love (sorry girlfriend) with my new tungsten bucking bar.

20 rivets in 1.5 hours. Good day.

Prev | Next


Right Elevator Stiffeners and Priming

April 12, 2010

Prev | Next

Today was pretty boring. All I did was trim the aft end of right elevator’s stiffeners and prime the two spar reinforcement plates.

Here's half of my right elevator stiffeners.

Of course, I finished deburring, edge finishing, and cleaning the two right elevator spar reinforcements. I even got the girlfriend involved. She took the parts inside and scrubbed them down with dawn. Now it really is “our” airplane.

Two spar reinforcements, primed on one side.

While that one side was drying, I finished up with the stiffener trimming. Here’s a shot of my weapon of choice.

Stiffeners and snips.

After I finished my first 7 stiffeners, I laid them into the skin, just for kicks.

Stiffener work is boring, but it means that there is backriveting coming soon, and I love backriveting.

Drink of choice tonight (only during piddly stuff, never during “real” construction): Rum and Coke. Mmm. Rum.

Rum. Coke. Stiffeners. Sharpie. And a damn dirty workbench. (Those splotches are ski-wax drippings.)

Anyway, I think it was an hour tonight, including the 5 minutes of double duty with the girlfriend’s help. I’m gonna get her to help more.

Prev | Next


Right Elevator Skeleton and Stiffeners

April 9, 2010

Prev | Next

Sorry for the tardiness on the commentary. Here it is.

I decided after riveting the trim reinforcement plate that I will stick with the right elevator for now. Of course, here is the obligatory plans picture.

On to the right elevator.

Instead of following the directions to start in on the stiffeners, I sorted through my lower workbench shelves and pulled out the parts for the right elevator skeleton. I just laid them on the (very dirty) workbench and grabbed this picture.

Right elevator skeleton, ready to rivet. Just kidding.

First up, prepare the two end ribs (edge finish, then flute).

Here they are (E-703 and E-704), sitting nice and flat with each other.

I can’t remember why I took this picture. Maybe after I removed the blue vinyl?

right elevator spar.

Then, it’s time to match-drill the two end ribs together.

The two end ribs clecoed together for match-drilling.

After that, they want you to cleco the two end ribs onto the rear spar. You can see some misalignment here.

See the spar flange hole and how it doesn't line up with the counterbalance rib?

Here's the other side, still not aligned very well.

After some manipulation via fluting and flange straightening, I managed to get everything lined up and match-drilled.

Here's my 12" bit, doing what it does best.

Here’s the outboard assembly after match-drilling.

Ready for disassembly.

Next, they want you to cleco in the counterbalance skin with the counterweight.

There's the right elevator counterweight.

I read on some other builders’ sites that it was difficult to cleco the counterbalance skin on the rib assembly. I didn’t have too much trouble, but it was definitely easier to work front to back.

Counterweight clecoed in.

Next (before going back to the counterweight for drilling), I clecoed on the inboard rib. These are matchrileld to #40, then dimpled and set with flush rivets on the front web of the spar. The reason? The elevator horn must sit flush on this surface. You’ll see later.

E-709 Root rib clecoed on.

Now back to the counterweight. Van’s wants you to matchdrill these to #12. I started with a #40 and worked my way up, blatantly ignoring the advice to use drill lubrication. Of course, I broke 3 bits before I subdued my own stubbornness and moved on to something else.

Broken bit, I need to get some Boelube.

I managed to get some locking needle-nose pliers around the bit and back it out slowly.

Anyway. I moved on to the skeleton.

Here's the skeleton clecoed together and match-drilled. You can see where the elevator horn will sit flush on the spar web necessitating the flush rivets between the spar and the root rib.

Then, I spent a little time inside on the stiffeners. I just rough cut them with snips to the general size.

These are for both elevators, some of these will be cut down further for the smaller required stiffeners between the trim spar and main spar on the left elevator.

2.0 hours today.

Prev | Next


Riveted R-912 Counterbalance Rib

March 23, 2010

Prev | Next

After priming the R-912 counterbalance rib and R-913 counterbalance skin last night, I thought I would get those installed on the skeleton. First thing to do is check the plans for a rivet callout.

What!? No rivet callout? That means I have to think!

No rivet callout for the R-912 to R-902 spar attachment.

I grabbed the shortest AN470AD rivet I could find…AD4-4. That seemed to be good.

This one will work.

And an after picture. Wuhoo!

Successfully set rivets.

I squeezed these. I’m still not totally happy with my squeezers ability to squeeze AD4 rivets.

Not too shabby.

Then, I grabbed the counterbalance skin and clecoed it on. My squeezer is only a 3″ yoke, so I can’t reach any of these holes.

My squeezer isn't long enough to reach these holes, and the girlfriend is outside helping me with some deck chair refinishing, so no rivet gun tonight.

Another picture of those two clecoed on the skeleton.

It's nice outside, so I had the garage door open. Lot's of sunlight in the afternoons.

Finally, I got the left skin clecoed on to check for fit and complete any remaining edge-finishing required before riveting.

Left rudder skin to counterbalance skin holes.

To be determined: whether I should edge-roll the forward edge of the rudder skin where it overlaps the counterbalance skin.

It looks good now, but might pull up when I rivet. I think I'll edge roll this. "Avery? Please send me your edge roller tool. Thank you."

Two rivets set today. Half hour total.

Prev | Next


Rudder Skin Prep, Skeleton Riveting

March 20, 2010

Prev | Next

In between some yardwork, watching the sprinklers, and cleaning up the house, I made some good progress on the airplane.

First thing, I found a stiffener rivet that was sitting a little proud. (Drilled rivet #1 today.)

Off with your head!

Silly me, though, I didn’t get any pictures of it after it was reset. I was being lazy with the camera today. Sorry.

Next up, skin deburring and dimpling.

The holes on the right are the tip rib #40 holes. The ones on the left have been drilled to #30.

After deburring, scuffing and dimpling, we are ready for priming.

The top of the right rudder skin after deburring, scuffing and dimpling.

Then, more deburring, scuffing and dimpling.

I didn't forget the hole on the bottom of the picture. This hole is match-drilled with the rudder tip and then dimpled to #30.

After cleaning, I shot a little primer on the skin.

Primed right rudder skin.

I had a very specific order here. First, deburr, scuff, dimple and prime the top, forward edge, and bottom edge. Then, while the primer is drying, devinyl the aft edge (vinyl used as masking for the primer), deburr, scuff and dimple the aft edge. This edge doesn’t get primed, as we’ll use the fuel tank sealing instructions with Pro-seal to glue the trailing edges together.

After scuffing the aft edge, I started pulling off the blue vinyl from the interior of the skins.

This just looks so nice.

Another shot of me devinyling.

Then, I spent a couple minutes making the slot at the bottom of the skin a little bigger. One of the flanges from the control horn fits in here, and during initial assembly, there was some interference.

Notch enlarged.

And the left skin, primed.

Got the left skin primed and ready for devinyling.

Ame thing on this skin, while the primer was drying, I devinyled the trailing edge, scuffed, and dimpled.

Scuffed and dimpled the trailing edge.

Here’s the left skin after devinyling. I’ll store this skin until final riveting. Now, back to the skeleton.

Shot 1 of 2 of the prepped left rudder skin.

Shot 2 of 2 of the prepped left rudder skin.

In the middle of the day, I ran out of primer and scotchbrite pads, so I ran out for both.

Napa 7220 Self Etching Primer.

Maroon scotchbrite pads.

They didn’t have any maroon on the shelf, but they had some grey. I asked the guy out front, and he went to the back and grabbed 3 unpackaged pieces. Usually, there are $5 or $6 for the three. He gave them to me for a couple dollars, which was nice.

I like them cut in about 2" x 2" squares. Good to go until the end of the tail kit, I'm guessing.

I had some trouble with dimpling the last three holes in the rudder bottom rib. I drilled and countersunk a hole in a spare piece of steel I had, then realized it was too far from the edge to work. Awesome. Here’s a shot of my second attempt.

The new hole is on the bottom right. After countersinking, I used a rivet and my flush set to dimple the rib. Not perfect, but it'll work.

Then, I moved on to some riveting.

This is the spar and one of the spar reinforcements.

While I was moving everything around getting it ready for riveting, I broke my first tool. Now, it was about $0.50 from Harbor Freight, but I was still upset.

RIP cheap plastic clamp. (I'm lying. I actually gut the orange part off the other side and threw the clamp into a box somewhere. I'm sure it will come in handy at some point, even if it doesn't have the orange pads.)

Rivets were looking good, until the one to the right of the nutplate. Doh!

Which one of these is not like the other?

After a successful drill out (#2 of the day), I finished setting the rest of the spar reinforcements and snapped these two pictures.

Middle spar reinforcement.

Upper spar reinforcement.

That’s 16 set so far.

Then I mocked up the R-405PD Rudder Horn, R-710 Horn Brace, R-917 Shim, R-902 Spar, and R-904 Bottom Rib. Some people need to use blind rivets in some of these holes, but I figured I could do it with all solid rivets.

This is what I need to end up with after riveting.

I figured out that if I take off the R-904 bottom rib, I can reach in from above (bottom right of the picture) and get the horn brace to rudder horn rivets here, then slide the forward flange of the bottom rib under the rudder horn and get those from the lightening hole. Here I am setting the horn brace to rudder horn rivets.

I think this is going to work out well.

Another shot from further away.

Here’s all four of those set (set nicely, if I may add).

Horn brace to rudder horn rivets.

20 rivets set so far. Then I moved on to the R-606PP Reinforcement plate to R-902 Spar to R-917 Shim to R-405PD Rudder horn rivets. These need to be AN470AD4-7 rivets, which are LONG. I did have to drill one of them out. That’s #3 for the day. Boo.

This is an AN470AD4-7 rivet after drilling out. This is a long rivet.

But, I managed to reset it okay and get the others in with no trouble.

R-606PP to R-902 to R-917 to R-405PD rivets.

23 set. I scratched the R-405PD horn a little, so I scotchbrited it out, and shot some primer in there.

Some primer to cover the scratch.

Next, I slid the flange of the bottom rib under the rudder horn and lined up the holes. Now I need to drop some rivets in here.

Ready for riveting.

First, I set the horn brace to bottom rib rivets.

26 rivets set so far. These are looking good.

26 set. Finally, I set three more which are reinforcement plate to spar rivets.

These are above the bottom rib, so they are only reinforcement plate to spar rivets. Easy.

I started to rivet the complicated stuff together and LOOK WHAT I DID!

I think this is hilarious. Think I should drill it out?

This happened because I was bucking from above and shooting from below. The gun jumped around cause I was supporting it’s weight instead of letting gravity help me. That’s a no-no.

It was pretty easy to drill out (#4 for the day), here’s an inside shot; back to square one.

Ready to try again.

After setting the first two, a picture.

These look good.

And after much consternation (including using my double offset set as a bucking bar), I got the two outside rivets bucked.

Finally done with riveting for the day.

30 rivets set, 4 drilled out. Lastly, I matchrdrilled the E-614-020 to R-912 rib. This was a piece of pie.

Rudder counterbalance matchrilled to the counterbalance rib. Also, there's the hardware that will be used to fasten these two together.

4.5 hours today. Not bad for a Saturday afternoon.

Prev | Next


Primed R-902 Rudder Spar

March 18, 2010

Prev | Next

I was getting the itch to work on the airplane a little, so I tackled the R-902 Rudder Spar today. First thing, deburring. I know I have plenty of pictures of deburring , but I took a closeup of a few holes.

Hole on the left is deburred, hole on the right is not. This is the topside, though, so the raw hole on the right doesn't even have really bad burrs. The weird crap on the left is just a piece of metal left over from deburring, it's not really messed up.

Here’s an action shot of me using the oversized bit to deburr.

Action shot!

Here’s the spar, deburred, and ready for scuffing, cleaning, and priming. Sorry for all the pictures tonight.

R-902 Rudder Spar

Here’s a picture of me scuffing with my maroon scotchbrite pad. For some reason, I like this step in the airplane building process.

Left half is the raw spar, right half has been scuffed.

Then, Ginger noticed I was in the garage working, and since the garage temperature was the same as the house tonight, I left the door open.

"Jack, come out here and let's see what dad is doing."

Jack came to see what was going on.

Jack and ginger, curious as always. (They are collarless due to the baths they just got.)

To scuff the inside, I decided to clamp the spar down to the table. It makes scuffing slightly easier, and I can use two hands on the edges.

Some of my nice (but cheap) clamps from Harbor Freight earning their keep.

Next up, dimpling. The construction manual warns to maybe grind down the dies to make sure not to gouge the spar web. I didn’t seem to have any issues with clearance.

Dimpling with #40 tank dies.

Then, I took the spar inside and cleaned it with dawn dishwashing detergent. Then back outside to dry for priming. Here’s the spar in my fancy paint booth setup.

Spar, ready to be shot with primer.

I did the forward side of the spar first. (Notice the open garage door, I’m trying not to kill too many brain cells with the priming.)

Forward side of the spar primed.

A shot of the lower portion of the spar.

Then, after going inside to refill the wine glass (to let primer dry), play with the pups (let primer dry), and hang out with the girlfriend (let primer dry), I went back outside to prime the aft side of the spar.

The bright orange thing on the spar near the right 2x4 support is the reflection of a warning sticker above the garage door. The primer is still wet. I didn't see this until I uploaded the pictures.

After another half hour or so, I put the spar back on the table and clecoed the R-606PP (Lower Spar Reinforcement) and R-607PP (Middle Spar Reinforcement) to the spar, along with the appropriate K1000-6 nutplates.

I'm getting close to riveting again!

A closeup of the nutplate

I always get so excited when I get to this point.

That was pretty much it, except for more experimentation with the “macro” setting on my camera.

Eh. No reason for this picture. Just experimenting.

1.5 hours today. It felt nice to get a big piece like the spar done.

Prev | Next


Primed R-918s and R-608PP

March 14, 2010

Prev | Next

After a whole 10 days on vacation, a few flight delays, cancelled flights, rebooking to a city 6 hours away from home, lost bags, malfunctioning 737s, and a broken down rental car, I finally made it into the shop.

I know I wasn’t going to be able to put in hours and hours of work, but in the words of Bob, “baby steps.”

First of all, while I was gone, I got an order in from Avery. It contained the NAS 1097 “Oops” rivet kit, and two sets, both 1/8″, one straight, and one double offset. These were relatively cheap ($8 and $20, respectively) and I believe they will come in very handy. Here’s the merchandise.

I love buying tools. It's like crack, but more legal.

After unpacking the new tools, I finished deburring and edge finishing the R-918s.

A deburred and edge-finished R-918. I'm not sure which side this due to the glare in the picture. But you don't really care, though, do you? They are identical parts (although, make sure to keep them separate, because they've been matchdrilled to the rudder skins).

I shot a little primer on one side of those two pieces and started deburring and edge finishing R-608PP, which is the uppermost spar reinforcement plate. I shot a coat on one side of that, and the other side of the R-918s.

Ready to prime R-918s.

R-918s and R-608PP primed. They are still wet, which is why you can see the reflection of the garage insulation on the R-918s.

While waiting for those coats to dry, I unpacked my Oops rivet kit.

Which one of these labels isn't like the other?

All done and labeled.

I didn't have any more room in my rivet "briefcase" so I'll leave them in the included case.

Then, in a similar manner to Brad Oliver’s explanation page (another shot here), here’s my shot of some NAS 1097 rivets next to their AN426 counterparts.

AD3-3, 3.5, and 4 (AN426 and NAS 1097 of each to compare smaller heads for the same size rivet) and on the far right, an AN426AD3-3.5 and a NAS1097 AD4-3.5. Same size head.

From my understanding the AD3 (smaller) sizes are used when a smaller rivet head allows you to countersink thinner material (instead of having to dimple) in non-structural areas (dimples aid in the strength of the riveted pieces). Mostly, they are used where flush rivets are required to attach nutplates (so you don’t have to dimple the nutplates, which is apparently difficult).

The larger size (AD4) rivets are used primarily when you have messed up an exterior hole during riveting or drilling out a badly set rivet that you have to enlarge the hole. The smaller heads on the larger rivets match the regular sized rivet heads.

Once I got primer on those three parts, I put them back on the “table o’ small rudder parts”, to give you a good understanding of how much more tedious prep work I have to do before I can start riveting parts together. I can’t really complain. I love this stuff.

3 of 11 parts primed (and these are just the small parts).

A short half an hour today. Felt good.

NEXT DAY UPDATE:

CRAP!

Because the R-918 (rudder bottom fairing attach strips) go under the rudder skin and bottom rib, they need to be dimpled, and I forgot to do that last night.

Let’s see, rudder skin = regular #40 dimple dies, bottom rib = #40 tank dies, which means I’ll have to use the #40 tank dies on the R-918s, too. I wonder what the dies will do to a part that is already primed. I’ll give it a shot, take some pictures of the results, and re-prime if necessary. Boo.

Prev | Next